MCP Swarm Mode

Peer-to-peer context sharing across multiple Runtime instances.


Overview

MCP (Model Context Protocol) Swarm Mode enables multiple Igris Runtime instances to share conversation context in real-time, creating a distributed AI brain.

Key benefits:

  • Zero-configuration peer discovery (mDNS)
  • Real-time context synchronization
  • Encrypted storage (AES-256-GCM)
  • Any instance can continue any conversation
  • Fault-tolerant and offline-first

How It Works

  1. Auto-discovery: Instances find each other via mDNS + UDP multicast
  2. Context sharing: Full conversation history synced across all peers
  3. Encrypted storage: All context encrypted at rest
  4. Query any node: Any instance can answer using shared context

Configuration

{
  mcp: {
    enabled: true,
    mdns: true,              // Auto-discovery via mDNS
    multicast: true,         // UDP fallback for restricted networks
    persist: true,           // Store context encrypted on disk
    storage_path: "mcp_contexts.db",
    encryption_key: "${MCP_ENCRYPTION_KEY}"  // Optional custom key
  }
}

Quick Start

  1. Enable MCP on multiple instances with same config
  2. Start instances on the same network
  3. They discover each other automatically within 5 seconds
  4. Share context in real-time
# Instance 1
./igris-runtime --config config.json5

# Instance 2 (different machine, same network)
./igris-runtime --config config.json5 --port 8081

# They'll discover each other automatically

Testing

# Send request to Instance 1
curl -X POST http://localhost:8080/v1/chat/completions \
  -d '{
    "model": "phi3",
    "messages": [{"role": "user", "content": "Remember: my name is Alice"}]
  }'

# Query Instance 2 - it knows about Alice!
curl -X POST http://localhost:8081/v1/chat/completions \
  -d '{
    "model": "phi3",
    "messages": [{"role": "user", "content": "What is my name?"}]
  }'
# => "Your name is Alice"

Use Cases

High Availability

Multiple instances share load. If one fails, others continue seamlessly.

Edge AI

Deploy Runtime on multiple edge devices. They share context without needing central server.

Distributed Workloads

Spread AI inference across multiple machines while maintaining context continuity.

Air-Gapped Networks

Works in isolated networks where traditional synchronization isn't possible.


Security

  • Encryption at rest: All stored context encrypted with AES-256-GCM
  • Device-specific keys: Default encryption keys derived from hostname
  • Custom keys: Set MCP_ENCRYPTION_KEY env var for shared key
  • No network exposure: Context never leaves your network

Network Requirements

  • mDNS: Local network discovery (may be blocked in some corporate networks)
  • UDP multicast: Fallback for restricted networks
  • Ports: Configurable (default: 5353 for mDNS, 5354 for multicast)

Monitoring

# Check peer status
curl http://localhost:8080/v1/mcp/peers

# Response:
{
  "peers": [
    {"id": "runtime-1", "address": "192.168.1.10:8080", "last_seen": "2024-01-15T10:30:00Z"},
    {"id": "runtime-2", "address": "192.168.1.11:8081", "last_seen": "2024-01-15T10:30:05Z"}
  ],
  "total_contexts": 42
}

Performance

  • Discovery time: < 5 seconds
  • Sync latency: < 100ms within local network
  • Storage overhead: ~1 KB per message (encrypted)
  • Network bandwidth: Minimal (only context diffs synced)

Troubleshooting

Peers not discovering

  • Check if mDNS is blocked (corporate firewalls)
  • Enable multicast: true for UDP fallback
  • Verify instances are on same network

Context not syncing

  • Check encryption keys match (if using custom key)
  • Verify persist: true is enabled
  • Check logs for sync errors

See MCP Guide for detailed troubleshooting.